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Ab*&-Spatiany distributed probability density functions 
@dfs) are becoming relevant to the Earth scientists and ecologists 
because of st&las& models and new sensors that provide 
numerous realhations or data points per unit area. One source 
of these data is from multi-retJ.un airborne lidar, a type of laser 
that records multiple returns for each pulse of light sent towards 
the ground. Data from multi-rem lidar is a vital tool in helping 
us understand the strocture of forest canopies over large extents. 
This paper presents several new visualization tods that allow 
scientists to rapidly explore, interpret and discover characteristic 
distributions within the entire spatial field. The major contribu- 
tion from-this work is a paradigm shift which allows ecologists 
to think of and analyze their data in terms of the distribution. 
This provides a way to reveal information on the modplitg and 
shape of the dmbufion previously not possible. The tools allow 

'cs 
to forest structures. Examples are given using data from High 
Island, southeast Alaska. 

thescientiststodepartfromtmditionaip , ' 'c statjstical 
analyses and to pssoeiate nmltimodal distribution dnua&m& - 

I. INTRODUCTION 
Historically, scientists have relied on the use of statistical 

descriptors such as the mean, median, standard deviation, 
skewness and kurtosis to describe and compare the populations 
they are sampling. While these statistical measures work well 
for describing and comparing unimodal distributions, they 
often fail to capture the nature and dynamics of multimodal 
distributions. Yet multimodal distributions commonly occur 
in populations found in the natural environment. Multim0da.l 
distributions create a challenge for visualization because they 
are less easy to sumTII;ITize and thereby render with a few 
variables or parameters. In a geospatial context, multimodal 
distributions provide an even greater problem. In this context, 
a distribution may exist at many locations in a spatial field, 
such as at every cell in a grid. If even some of the distributions 
are multimodal and cannot be surmnarized easily, the whole 
field cannot be rendered using conventional approaches. 

In this paper, we develop and apply visualization techniques 
and tools in a new way: to visualize, query and compare 
distributions of earth science data on a grid The data we 
have chosen to use is of a new type of increasing interest to 
ecologists. These data come from lidar (Light Detection And 
Ranging) instruments, airborne remote sensors that measure 
vegetated surfaces such as forests. Such measurements are 
collected to gain a detailed understanding of the canopy 
structure across an entire study area, rather than at a few select 
plots. Distribution data on the height of the vegetation canopy 

results from the collection of multiple observations over a fixed 
area. The distribution data in this study were derived from raw 
multi-rem lidar data of forest and provide informarion on 
forest structure, tree size and density. Forest plots recovering 
from natural disturbance tend to have unimodal distributions 
of stem sizes and canopy heights with low standard devia- 
tions, whereas older, less disturbed forest plots tend to have 
multimodal distributions [SI. 

To better understand the forest canopy distributions derived 

tools. 1 hese tools were seieCte4i because they G o w  s i a i k i s  
to query their data in new ways in order to better understand 
the distributions of ecological phenomena, both at single 
locations and across the sparial domain. Such visualization 
tools allow for exploration, interpretation and discovery and 
extraction of characteristic distributions. These tools may also 
be applied to visualize other ecological phenomena for which 
detailed spatially explicit distribution data exist or can be 
derived. The scientists' job is to associate ecological meaning 
to these distributions. Such meaning can be derived from field 
reconnaissance, expert knowledge or ancillary information. 
Among the science questions these tools can help answer are: 

1) What new scientific insights can be gained from working 
with distribution data? 

2) How does exploring, probing and performing query 
through visualization tools enhance the understanding 
of the distribution data? 

A key contribution of this paper is the development of new 
visualization tools that allow scientists to continually perceive 
and explore their data in terms of the dismiution, rather than 
through coarse statistical descriptors, or clustering algorithms, 
as was previously the case. Thus new and important informa- 
tion about the nature and dynamics of the distribution can be 
captured both visually and quantitatively. 

from lidar data, we have developed some new visualizati On 

11. BACKGROUND 
The challenge to visualizing spatially explicit, multimodal 

distributions is the four dimensional nature of the problem. 
To consider probability density functions @dfs) over space, 
two dimensions are the orthogonal spatial dimensions, a third 
is the variable scale (in this case the height scale given by 
lidar) and the fourth is the frequency scale. Previously, we have 
reported on techniques for visualizing 4D spatial distribution 
data sets [31 using parametric statistics. That is, the pdf at 
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every cell is characterized by a few statistical parameters such 
as mean, standard deviation, skewness, etc. and visualized. 
When some of the pdfs, particularly in mixed forest areas, 
have multimodal distributions, statistical summaries are not 
sufficient. To address this, we have also developed shape- 
based descriptors for distributions [4]. The basic idea here is 
to describe the shape of a distribution using information about 
the number of modes, the location of the modes, the width 
and height of each mode, etc. This descriptive information is 
then mapped to visual parameters. We demonstrate how that 
approach can be brought to bear on the lidar data in Section V. 

More generally, we proposed an operator-based approach to 
visualizing cpt ia l  distribution data sets [7]. The main idea here 
is to treat distributions as first-class objects with their own set 
of methods and operations. This allows one to compare, add, 
subtract, etc. two distributions. More complex operations can 
also be constructed from these simpler operations. The benefit 
of this approach is that standard visualization techniques such 
as contour lines, isosurfaces, streamlines, etc. can be extended 
to support the new data type. 

Previous efforts to visualize lidar data [2], [9] presented 
ways in which a user can navigate through forest lidar data sets 
within a virtual environment. This is essentially the creation 
of a digital elevation model of the canopy top. Unlike this 
approach, our approach looks at aggregated multiple lidar 
returns. Therefore the data at each cell location is actually 
a collection of height values. In this study, we visualized 
distributions from 0.1 hectare cells, the size of field plots for 
which forest stand measures exist. The techniques developed 
in [3], [4], [7] is brought to bear upon this problem. 

111. DATA 

Forest canopy height distribution data were collected using 
a multi-return lidar system. The system, the digital airborne 
topographic imaging system (DATIS-2; 3-Di Technology, MD, 
USA) is a small footprint lidar. The sensor is capable of 
retrieving multiple (up to 5) returns of elevation and intensity 
for every shot as it passes through a forested canopy. Over 
wooded terrain, the first return measures forest canopy height, 
while the last return measures ground elevation. The laser fires 
at a rate exceeding 4000 pulses per second and scans across 
the aircraft flight path (see Figure 1). Since the speed of light is 
known, the reflection time of the laser light back to the aircraft 
is measured, allowing the distance to the terrain surface to 
be calculated. To locate the elevation points, the latitude and 
longitude of the aircraft are recorded with a high accuracy 
(< 1 cm) Global Positioning System (GPS). The accuracy of 
point locations is further increased by compensating for the 
the aircraft’s attitude (pitch, roll and yaw), measured using an 
inertial measurement unit. DATIS-2 was flown in a Cessna 206 
in May 2001. The data were initially collected at a density 
exceeding 2 shots per m2. Raw data were processed into 
81 measures of maximum forest canopy height for each 0.1 
hectare cell across the island, resulting in 1800 0.1 grid cells 
with distribution data for each cell. 

The data were collected above High Island (approximately 
500 hectares), which is located in the middle of the Alexander 

Archipelago (Figure 2). The maximum elevation on the island 
is 150 m. The parent material is fractured basalt. Average 
annual precipitation is 1.9 m, with the wettest months during 
fall and winter. Extreme temperature fluctuations are infre- 
quent due to the maritime influence. Cloud cover, precipitation, 
cool ambient air temperatures (4-10 “C), and high relatively 
humidity ( 80%) are characteristic throughout the year. The 
island is dominated by productive western hemlock (Tsuga 
heterophylla (Raf.) Sarg.) with scattered Sitka spruce (Picea 
sitchensis (Bong.) Carr.). 

Fig. 1. Airborne lidar data acquisition 
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Fig. 2. 
collected 

Vicinity map of High Island in Alaska where the lidar data were 

IV. ALGORITHMS 
Prior to visualization, algorithms are applied to the raw data 

to estimate and characterize their distributions. In particular, 
density estimation is used to generate a probability density 
function from the 81 heights at each grid cell, a peak hunting 
algorithm is used to find all the modes in the pdfs, and an 
operator is selected to allow distribution matching. 

A. Density Estimation 
For each grid cell in the field, there are multiple lidar 

returns, each with an associated height. These represent a 
sample of the full set of heights of all elements in the 
canopy. We use each sample to make an estimate of the “true” 
density, that is, the distribution of the full set of heights. One 
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common density estimator, the histogam, does not produce a 
mathematically valid pdf and is very sensitive to the bin widrh 
used. There are many other estimators possible depending on 
the nature of .the data [ 81. In this application with lidar data, we 
selected a kernel estimator because it provides robust density 
estimation and is widely used. 

A kernel estimator is given by 
rVpe A tVpeA type6 mncatenate(A.6) 

(1) Fig. 3. Basic and concatenated type A and type B peaks. ' 

density at the end of the in&&l. If the start and end of the 
interval have the same density, then the peaks are classified 
as type A. We use the following rules for concatenating the 
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(2) /, K ( t )  d t  = 1 

If the kernel function K ( t )  is C1 continuous, then kernel esti- 
mators are ais0 C1 functions; this is in contrast to histograms 
which are CO continuous. For this application, we used the 
Gaussian kernel function: 

peaks- 
These two types of basic peaks may be to 

peaks according to the following rules: 

(3) 

Kernel estimators are also influenced by h which controls 
the overall smoothness of the estimate. As h decreases, the 
kernel estimator becomes more sensitive to slight variations 
in the distribution; as h increases, contributions from more 
neighboring points are coalesced to form a smoother estimate. 
If h is not chosen appropriately, the shape of the estimate can 
vary sigmficantly and even change the modality of the pdf 
(e.g. from unimodal to bimodal). So, rather than letting the 
wer specify the value of h. a &-dependent h can be derived 

h = 0.9 x min(std. dev., interquartile range/1.34) n-i. 
(4) 

For the lidar data, we compute the kernel density estimate 
f i j ( t )  for each grid point (i,j) using the data-dependent 
smoothing factor given in Equation 4. Thus, the smoothing 
factor h would vary across the field depending on the data 
values at each grid point 

PI :  

B. ModeFinding 
We used the following algorithm which we proposed in [4]. 

Given a pdf obtained from a density estimator, our goal is to 
determine the number of peaks in the distribution and their 
respective positions. The distribution may be very bumpy, in 
other words it has many local maxima. First, we compute all 
the local maxima in the distribution. By our definition, a local 
maximum is an interval [a,b] such that the density estimate 
is concave over [a,b], but not over any larger interval [SI. 
We refer to the local maximum as a basic p e d .  The height 
of a peak is defined as the.vertical distance between the 
local maximum and one of the two ends of the interval with 
higher density. A peak with height higher than a user-defined 
threshold is considered significant. A concatenated peak, as 
its name implies, includes at least two basic peaks. We further 

concatenate(A, A )  = A 

A if the start of A 5 the end of B 
concatenate(A, B)  = B otherwise 

concatenate(B, B)  = B (7) 

The concatenate@, A) produces no new peaks. These o p  
erations apply to both basic and concatenated peaks. The 
peaks tn he concatenated must be adjacent to each other and 
concatenation only takes place if at least one of the two 
adjacent peaks is not significant. Then we iteratively loop 
through all the basic peaks and determine if the adjacent 
peaks can be concatenated into a concatenated peak. The 
iterations stop when there is no concatenation possible, that is, 
all pairs of adjacent peaks are considered as significant peaks. 
Finally, we count and record the locations and heights of these 
significant peaks. 

C. Distribution matching 
We used an operator that compares distributions in order to 

fmd ones that have shapes that match a distribution of interest. 
The operator returns a scalar value that indicates how similar 
the two distributions are. The operator applied for this purpose 
is the Kullback-Leibler (KL) operator [l], [6].  Let P and Q be 
two distributions of variable z to be compared. The Kullback- 
Leibler distance is defined as follows: 

KL(P, Q )  = (8) 

The greater the KL distance is, the less similar the two 
distributions are. We set a threshold to control how similar 
we want the search results to be to a distribution of interest 
or target distribution. All the distributions with a distance less 
than the threshold to the target distribution will be accepted 

P ( z )  
- W  Q ( Z )  

P ( z )  log -dz 
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Fig. 4. Flow chart of the visual analysis of dismbution data made possible 
by the techniques described in th is  paper. Ovals denote algorithms. Rectangles 
denote the techniques proposed in this paper. The axis from left to right shown 
near the bottom of the diagram shows how the techniques showcase general 
to increasingly specific features of the distributions. 

as similar distributions to the target distribution. By relaxing 
the threshold, a larger number of similar distributions will be 
identified. 

V. VISUALIZATION TOOLS 

In the following subsections, we describe several visualiza- 
tion techniques designed to provide capabilities ranging from 
synoptic, general views of the full data set to more specific, 
localized and detailed query and display. The techniques allow 
extensions well beyond summary descriptors such as the 
quadratic mean, robust mean and chi-square or other “non- 
parametric” summaries or clustering algorithms. Briefly, they 
are a map display of the number of modes for each distribution, 
an interactive data probe, mode exploration (finding locations 
that have distributions with modes specified by the user, 
finding distributions that have a specified number of modes 
and graphing distributions that have specific modes) and dis- 
tribution exploration (matching complete distribution shapes). 
For each technique, we describe how it can assist the scientist 
in exploring distributions. We apply these tools to distributions 
of canopy height derived from the lidar data, focusing on 
three characteristic distributions that are of particular interest 
to the scientist. Collectively, these tools can be used effectively 
to analyze distribution data. Figure 4 depicts relationships 
among the techniques, starting from the number of modes 
(which many different distributions may have in common), 
to querying a specilic mode in a distribution (which a smaller 
subset will share), and finally to matching a distribution, which 
another, possibly even smaller subset of distributions will 
share. So, the queries work with increasing specificity. 

It is envisioned that these visualization tools will provide 
scientists with new understanding of their data, previously 
not possible. The extraction features provided with many of 
these tools will allow creation of new data sets from specific 
distributions, or portions (e.g. modes) of distributions, that are 
of interest. 

A. Displaying the modality of the distribution data 
The first look at the spatially explicit distribution data 

shows the number of modes for each cell, calculated using the 
algorithm described in Section N-B (Figure 5). This synoptic 
descriptor of all the data across the sample space provides 
the scientist with the first glimpse of new information related 
to the distribution. The modality of each cell gives some 
indication of patterns of multimodality. This is the first new 
information about the distribution that is not available through 
coarse statistical descriptors. This display helps answer ques- 
tions such as what proportion of the data is unimodal or 
multimodal? Are the number of modes spatially clustered or 
concentrated in any one subregion of the field? 

Fig. 5. 
tions in the High Island lidar data. 

The spatial locations of unimodal and complex multimodal distribu- 

B. Interactive Data Probe 
We have implemented an interactive data probe that allows 

the user to view the distribution of an individual cell at the 
current probe position set by the user. The interactive data 
probe is straightforward and useful for visualizing the pdf 
at any location in the field. It provides a per point basis 
query and shows the modality of the distribution. Only one 
density estimate is displayed at a given time. To begin gaining 
familiarity with the data the scientist can probe the forest data 
at different locations in order to have a good overall feel for 
the distributions in the study area. In addition, when viewing 
the distribution of a given cell, adjacent cells can be selected 
(through an up, down, left and right keyboard feature), thus 
allowing the scientist to visually traverse portions of the forest. 
This feature allows the scientist to view and relate distributions 
of particular forest regions of interest that s h e  might already 
be familiar with through field reconnaissance or other ancillary 
data. 

Figure 6 shows the kernel density estimate and the his- 
togram at the probe position shown on the right image of 
the figure. The image is colored by the mean canopy height. 

C. Mode Exploration 
The modes of a distribution can be explored in a variety 

of other ways using mode exploration tools. For all of these 
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a new query is generated and the tool updates the screen by 
highlighting grid cells that satisfy the query. 

Fig. 6. The image on the right shows the mean canopy height of the lidar 
distribution data at each grid cell locatian. The bottom plot is a histogram 
of the dara values making up the dishitrution at the moss-hair. At the probe 
position, the tree heigbl is approximately 117 ft, which is demted by the 
black venial  line in the histogam. The top plot is a kernel estimate of those 
values. 

Fig. 7. The image plane shows the mean canopy height for each cell in 
the field colored by six classes according to the key. The cells marked by 
black squares denote those locations found by the follo- query: (1) the 
distribution has a mode (peak) between the heigbrs of 117 and 194 feet, and 
(2) the ikquency of the distriburion is above 0.05 (or 5%) of the canopy 
height measurements. 

tools, the mode is computed using the peak hunting algorithm 
as described in Section IS-B. Meaningful mode exploration 
depends on usrng the proper density emmator, so that shapes 
in the distribution are real and not an axtifact of low sampling 
density in the data. Conversely, it is important that all real 
information in the distribution be retained, so the smoothing 
function must minimize the loss of real information contained 
in the distribution. Our mode exploration tools comprise 
of the following processes: (1) mode query, (2) visualizing 
the distributions from the results of a mode query, and (3) 
visualizing the distributions and the spatial locations from the 
results of a mode query. Each of these processes is described 
in more detail in the following sections. 

I )  Ma& query: Mode query allows the scientist to specify 
queries that show: (1) the abundance, (2) the spatial location 
(possibly corresponding to ancillary information about that 
area or prior knowledge), (3) the spatial extent and (4) the 
spatial structure (e.g. random vs clustered) of distributions 
with a specific mode. This feature allows all the distributions 
that contain a particular mode of interest to be identified and 
displayed. For example, after using the interactive data probe 
and relating the distributions observed with field observations, 
the scientist became interested in finding a l l  unimodal distri- 
butions with a mode between 1 17 and 194 feet. The mode 
query tool now allows for visual identification of all those 
distributions that match the query. Figure 7 shows the locations 
of the forest that have unimodal distributions with a canopy 
height mode between 117 to 194 feet and with the minimum 
density value M = 0.05. These locations are grid cells denoted 
with black squares. It is not surprising that the mean field of 
the distribution data at these grid cells are relatively high as 
indicated (in the red and magenta color range in Figure 7). 
For reference, the topography of the data are shown in Figure 
8. Our tool allows the user to interactively change the range 
of values where the mode should lie within and the minimum 
density value M ,  along with the number of modes for the 
entire distribution. When any one of these parameters changes, 

Fig. 8. 
Individual trees in the forest are represented by the tree-like icons. 

A graphical model of the High Island forest from the lidar data 

2)  Ksuulking the distributionsfrom a mode query: From 
a mode query, there may be tens or hundreds of grid cells that 
match a specified mode criterion. The visualization challenge 
here is how to display all of these density estimates effectively, 
so that the scientists can begin to explore the shapes and 
diversity of the distributions identified through the query. 
Furthermore, these similarities and differences need to be 
highlighted for analysis e.g. for those p d f s  that are “very” 
different, the information about which grid cells these pdfs 
represent should be shownmighlighted. Similarly, the grid cells 
of those conforming pdfs (pdfs that are similar) should be 
clustered or colored in the same group. If the pdfs are very 
different, then the scientist would like to know how they differ 
and where they differ. 

The most common approach to view several pdfs is to 
simply plot them side by side for visual comparison. This 
can be done by plotting a set of pdfs, or as many pdfs that 
can possibly fit on the screen in multiple windows. If the 
query only found a few pdfs, then this method is ideal and 
effective for comparing these pdfs. However, if there were tens 
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or hundreds of pdfs found by the query, the user would need 
to view so many graphs as to make this method impractical. 

Another simple approach is to plot all of the pdfs in one 
single graph, giving the scientist a visual comparison of these 
pdfs. This method is only useful, however, if the scientist is 
interested in determining whether there are any pdfs that differ 
significantly from others. The scientist would be able to see 
the overall shapes of these pdfs using this approach. However, 
for more detailed comparisons of pdfs, this method would not 
be suitable sinceit is most likely that many pdfs would overlap 
in the graph which makes it difficult to distinguish the details. 
Figure 9 shows a graph of the pdfs that matched the query 
used in Figure 7. By displaying all of these pdfs in the same 
graph, the overall shape of these distributions can be seen to 
be very close. 

Visualizing the distributions identified through a mode query 
not only allows the scientist to inspect them, it also allows the 
scientist to look for the following features: (1) outliers (how 
are outliers shaped, how many modes do they have, etc.), (2) 
trends (how are most of the distributions shaped, how many 
modes do they have), (3) diversity (how different are they from 

150 evaluation points are used. The color of each pdf curve 
presents the mean tree height of the distribution data at the 
corresponding grid cell. There are some parameters that the 
user can set for this approach. For example, the user can select 
another arbitrary direction to project the pdf curves and a 
different statistical descriptor to color the pdf curves. Though 
at first glance, the ”drop down” pdfs shown in Figure 10 may 
appear to be some how cluttered as those shown in Figure 9. 
However, our tool allows the scientists to interactively rotating 
the graph shown in Figure 10 so that he/she may be able to 
view the ”drop down” pdfs from different angIes and thus 
allow for a better comparison of these pdfs and the shapes of 
these pdfs. 

Visualizing the distributions and the spatial locations iden- 
tified through a mode query allows a scientist to inspect 
them and find new spatialldistribution trends or clusters of 
“like” distributions. Conversely, the scientist can also find out 
where “different” distributions are located and if there are any 
random versus clumped patterns. Lastly, it also allows visual 
traversal of the distributions in a manageable way. 

one another), (4) homogeneity (how similar), and (5) modality 
of the distributions (1, 2, 3 or more peaks). 

0 m a0 I -00 1s *e4 
me.” 

I Fig. 10. Same query results as shown in Figure 9 except that the pdfs are 
plotted directly above the corresponding grid cells. These pdf curves provide 
another visual cue of the distributions found by a mode query. 

I 

Fig. 9. 
same query as shown in Figure 7. 

This graph show the distributions of those pdfs that matched the 

3) Visualizing the distributions and their spatial locations 
from a mode query: At this point, a scientist using the mode 
query tool has an idea of the locations and a graph of all the 
distributions that match the query. One source of information 
that is missing from the previous approach, shown in Figure 
9, is that we do not know which grid cell the pdfs correspond 
to. In Figure 10, the same pdfs from Figure 9 are plotted right 
above their grid cells. We found this technique to be effective 
also for revealing the pdfs found by the query. By plotting the 
pdfs right above the corresponding grid cells, we can easily 
see the spatial locations of the matching pdfs. Note that the 
pdfs are drawn such that the density estimates are plotted along 
the axis perpendicular to the image plane. We construct a pdf 
curve for each grid cell found by the mode query. A pdf curve 
is created by horizontally displacing points along a vertical line 
by the magnitude of the density estimate. The height of the 
pdf curve is determined by the number of evaluation points 
of the density estimate given in Equation 1. In our example, 

D. Distribution Exploration 
Distribution exploration is performed by distribution match- 

ing and visualizing similar distribution shapes. This allows 
scientist to identify all distributions that are similar in their 
entirety rather than in just a mode as described in Section V-C. 
Our tool allows the user to be more restrictive or more relaxed 
in the specificity of finding “like” distributions and allows all 
distributions to be ranked in terms of their similarity to the 
specified pattern. For example, matching could be restricted 
to certain data range, or only when the frequency is above 
a certain threshold. Likewise, matching could be relaxed by 
lowering acceptance threshold or using more liberal similarity 
metrics. Since density estimates vary in their quality, the 
ability to relax or restrict the definitions of similarity with 
the query tool allows user flexibility in identifying a range of 
like distributions and their spatial locations. 

Through using the interactive data probe, the scientist was 
able to “visit” portions of the forest he was already familiar 



Fig. 11.  us^ the distribution e tool. the scientist found all 
distributions that are similar to one (graph shown on the right) found to 
be recovering h m  a recent dismrbance event 

Fig. 12. This figure shears a forest recovering from a canstmphic 
disturbance event which was found to have a unimodal disaibntion. U+ng 
the data probe tool, the scientist identified the cbactmm . 'cdistnbunon 
nf fh! fnrst show! *& Eg13. 11 Orhm fnrpstc vrnvprinp fmm more 
recent disturbance events were found to have this same charactens ' tic 
dismbution 

with (through field reconnaissance). He was then able to obtain 
three characteristic distributions of forest that are in various 
stages of recovery from major storm-driven disturbances. 
Using the distribution matching tool, all distributions that are 
similar in their entirety to those three distributions of interest 
were identified using contour lines as illustrated in Fipees 11, 
13, and 14. Identifying similar or matching distributions can be 
a powerful way to perform hypothesis testing, guide additional 
field work, and generate new data products of interest. 

1) Msulizing matching distributions: Once the contours 
lines are generated from the results of the distribution match- 
ing tool, an additional visualization tool provides yet an- 
other way of studying subtle differences in the matching 
distributions. This tool constructs color mapped characteristic 
distribution surfaces to depict the variations of the pdfs along 
the contour lines. For each grid cell along a contour line, 
a vertical line is plotted right above the corresponding grid 
cell. Then, a surface mesh is formed by connecting vertical 
lines from the adjacent points along the contour line. The 
surface mesh is colored by the density estimates. Since there 
are usually several contour lines, our tool would generate 
several disjoint characteristic dismbution surfaces. As with the 

Hg. 13. The distribution on the right represents aee heights of a 
forest clump recovering from a recenr dmubane event wth residual 
(surviving) trees. The image on the left shows umtour lines of whexe 
such distributions can be found on the island The image is color mapped 
according to the similarity metric used in matchkg the cbaraaens ' tic 
disaibution on the right with the dishibution a! each pixel locarion. 

Fig. 14. Similar s e q  as Figure 13, but using a dmacten 'stic distribuion 
UGS impiies no eviaence of any recenx &sut~%ances. 

pdf curves shown in Figure 10, the height of the surfaces is 
determined by the number of evaluation points of the density 
estimate. Figure 15 shows the characteristic distribution sur- 
faces of the matching distributions. As with the visualization 
tools provided in the modality exploration, this visualization 
tool provides even further refinement of relative homogeneity, 
heterogeneity and associated possible spatial patterning of the 
characteristic distributions. 

VI. DISCUSSION 
Several visualization techniques ranging from synoptic, gen- 

eral views of the full data set to more specific, localized and 
detailed query and display were described in this paper. The 
techniques allow extensions well beyond summary descriptors 
such as the quadratic mean, robust mean and chi-square or 
other "non-parametric" summaries or clustering algorithms. 
The utility of each technique fundamentally depends on the 
selection of an appropriate density estimator. The estimator 
determines how the data are smoothed and how modes are 
dehed. Each estimator is different, and may be well-suited 
for one type of data but not another. The kernel estimator 
used in this application with lidar data, for example, may 
have smoothed possibly interesting features in the data. The 
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Fig. 15. This image shows the characteristic distribution surfaces for the 
contours lines shown in Figure 11. The surfaces are colored by the density 
estimates. The figure shows that the pdfs along the contours are mostly 
unimodal as indicated by the cenM magenta color band that runs across 
the middle section of the surfaces. 

appropriateness of a given estimator depends partly on the 
number of raw data values per grid cell. In general, the larger 
the number of raw values, the more robust a given esimator 
will be. The precision of the data can also affect the size of the 
kernel used and the consequent smoothing of the distribution. 

A key feature of these tools is their flexibility. Software 
that gives the scientist a choice of estimator and the ability 
to specify the parameters used in estimation will allow the 
accomodation of diverse data sets and exploratory data anal- 
ysis. The kernel estimator we used in this study was selected 
because it is a robust, widely-used estimation technique but 
many other choices are possible. 

Once an estimator is selected, the identification of modes is 
also not completely deterministic. Small bumps may be of little 
or no interest to the scientist, so what constitutes a mode in the 
display and query of modality can be user defined. Matching 
entire distributions is also a user-defined process. Success 
depends on increasing or decreasing the specificity of the 
distribution matching algorithm and having some meaningful 
criteria for doing so. Also, the distribution matching algorithm 
used is important. In this paper we used KL, but others are 
possible. Ultimately we envision a user-selection capability, 
so that various algorithms can be employed and their output 
assessed. 

VII. CONCLUSION 

Overall, our visualization tools provide new ways to query, 
visualize and compare distributions. The key contributions of 
this paper are as follows: 

1) provide automated ways to analyze forest canopy distri- 

2) make it easier for scientists to analyze distributions 

3) allow scientists to query distribution data for special 

a) identify areas of the spatial field with similar 

b) discover potentially interesting distributions then 

butions derived from lidar data, 

derived from lidar data, and 

features and then 

distributions and 

.find their locations. 

Though the application described in this paper deals specif- 
ically with multi-return lidar data, our tools can be easily 
be used with distribution data sets from other applications. 
There are several open research problems in visualizing spa- 
tially varying distribution data sets, including the extension 
to distribution data that are sampled in a 3D domain and the 
extension to distribution data on more than one variable at a 
time. 
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